Regular Polytopes

Laura Mancinska

University of Waterloo, Department of C\&O

January 23, 2008

Outline

 How many regular polytopes are there in n dimensions?
Outline

How many regular polytopes are there in n dimensions?

- Definitions and examples
- Platonic solids
- Why only five?
- How to describe them?
- Regular polytopes in 4 dimensions
- Regular polytopes in higher dimensions

Polytope is the general term of the sequence "point, segment, polygon, polyhedron,..."

Polytope is the general term of the sequence "point, segment, polygon, polyhedron,..."

Definition

A polytope in \mathbb{R}^{n} is a finite, convex region enclosed by a finite number of hyperplanes. We denote it by Π_{n}.

Polytope is the general term of the sequence "point, segment, polygon, polyhedron,..."

Definition

A polytope in \mathbb{R}^{n} is a finite, convex region enclosed by a finite number of hyperplanes. We denote it by Π_{n}.

Examples $n=0,1,2,3,4$.

Definition

Regular polytope is a polytope $\Pi_{n}(n \geq 3)$ with
(1) regular facets
(2) regular vertex figures

Definition

Regular polytope is a polytope $\Pi_{n}(n \geq 3)$ with
(1) regular facets
(2) regular vertex figures

We define all Π_{0} and Π_{1} to be regular. The regularity of Π_{2} is understood in the usual sense.

Definition

Regular polytope is a polytope $\Pi_{n}(n \geq 3)$ with
(1) regular facets
(2) regular vertex figures

We define all Π_{0} and Π_{1} to be regular. The regularity of Π_{2} is understood in the usual sense.

Vertex figure at vertex v is a Π_{n-1} obtained by joining the midpoints of adjacent edges incident to v.

Definition

Regular polytope is a polytope $\Pi_{n}(n \geq 3)$ with
(1) regular facets
(2) regular vertex figures

We define all Π_{0} and Π_{1} to be regular. The regularity of Π_{2} is understood in the usual sense.

Vertex figure at vertex v is a Π_{n-1} obtained by joining the midpoints of adjacent edges incident to v.

Star-polygons

$\left\{\frac{5}{2}\right\}$

$\left\{\frac{8}{3}\right\}$

$\left\{\frac{7}{2}\right\}$

$\left\{\frac{9}{2}\right\}$

$\left\{\frac{7}{3}\right\}$

\{9 $\left.{ }^{9}\right\}$

Kepler-Poinsot solids

Two dimensional case

In 2 dimensions there is an infinite number of regular polytopes (polygons).

\{3\}

\{7\}

\{4\}

\{8\}

\{5\}

\{6\}

\{9\}

$\{10\}$

Necessary condition in 3D

Polyhedron $\{p, q\}$

- Faces of polyhedron are polygons $\{p\}$
- Vertex figures are polygons $\{q\}$. Note that this means that exactly q faces meet at each vertex.

Necessary condition in 3D

Polyhedron $\{p, q\}$

- Faces of polyhedron are polygons $\{p\}$
- Vertex figures are polygons $\{q\}$. Note that this means that exactly q faces meet at each vertex.

$$
\left(\pi-\frac{2 \pi}{p}\right) q<2 \pi
$$

Necessary condition in 3D

Polyhedron $\{p, q\}$

- Faces of polyhedron are polygons $\{p\}$
- Vertex figures are polygons $\{q\}$. Note that this means that exactly q faces meet at each vertex.

$$
\begin{array}{r}
\left(\pi-\frac{2 \pi}{p}\right) q<2 \pi \\
1-\frac{2}{p}<\frac{2}{q}
\end{array}
$$

Necessary condition in 3D

Polyhedron $\{p, q\}$

- Faces of polyhedron are polygons $\{p\}$
- Vertex figures are polygons $\{q\}$. Note that this means that exactly q faces meet at each vertex.

$$
\begin{aligned}
\left(\pi-\frac{2 \pi}{p}\right) q & <2 \pi \\
1-\frac{2}{p} & <\frac{2}{q} \\
\frac{1}{2} & <\frac{1}{p}+\frac{1}{q}
\end{aligned}
$$

Solutions of the inequality

Inequality

- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$
\frac{1}{2}<\frac{1}{p}+\frac{1}{q}
$$

Solutions of the inequality

Inequality

- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$
\frac{1}{2}<\frac{1}{p}+\frac{1}{q}
$$

Solutions

$$
\begin{array}{|l|l|l|}
\hline p=3 & p=4 & p=5 \\
\hline & & \\
\hline
\end{array}
$$

Solutions of the inequality

Inequality

- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$
\frac{1}{2}<\frac{1}{p}+\frac{1}{q}
$$

Solutions

$$
\begin{array}{|l|l|l|}
\hline p=3 & p=4 & p=5 \\
\hline q=3,4,5 & & \\
\hline
\end{array}
$$

Solutions of the inequality

Inequality

- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$
\frac{1}{2}<\frac{1}{p}+\frac{1}{q}
$$

Solutions

$$
\begin{array}{|l|l|l|}
\hline p=3 & p=4 & p=5 \\
\hline q=3,4,5 & q=3 & q=3 \\
\hline
\end{array}
$$

Solutions of the inequality

Inequality

- Faces are polygons $\{p\}$
- Exactly q faces meet at each vertex

$$
\frac{1}{2}<\frac{1}{p}+\frac{1}{q}
$$

Solutions

$$
\begin{array}{|l|l|l|}
\hline p=3 & p=4 & p=5 \\
\hline q=3,4,5 & q=3 & q=3 \\
\hline
\end{array}
$$

But do the corresponding polyhedrons really exist?

$$
\{p, q\}=\{4,3\}
$$

Cube

$$
\{p, q\}=\{4,3\}
$$

$$
(\pm 1, \pm 1, \pm 1)
$$

$$
\{p, q\}=\{3,4\}
$$

Octahedron

$$
\{p, q\}=\{3,4\}
$$

$$
\begin{aligned}
& (\pm 1,0,0) \\
& (0, \pm 1,0) \\
& (0,0, \pm 1)
\end{aligned}
$$

$$
\{p, q\}=\{3,3\}
$$

Tetrahedron

$$
\{p, q\}=\{3,3\}
$$

Tetrahedron

$$
\{p, q\}=\{3,3\}
$$

$(+1,+1,+1)$ $(+1,-1,-1)$
$(-1,+1,-1)$
$(-1,-1,+1)$

$$
\{p, q\}=\{3,5\}
$$

Icosahedron

$$
\{p, q\}=\{3,5\}
$$

Icosahedron

$$
\{p, q\}=\{3,5\}
$$

$(0, \pm \tau, \pm 1)$
$(\pm 1,0, \pm \tau)$
$(\pm \tau, \pm 1,0)$
where
$\tau=\frac{1+\sqrt{5}}{2}$

$$
\{p, q\}=\{5,3\}
$$

Dodecahedron

$$
\{p, q\}=\{5,3\}
$$

Dodecahedron

$$
\{p, q\}=\{5,3\}
$$

$(\pm 1, \pm 1, \pm 1)$
$\left(0, \pm \tau, \pm \frac{1}{\tau}\right)$
$\left(\pm \frac{1}{\tau}, 0, \pm \tau\right)$
$\left(\pm \tau, \pm \frac{1}{\tau}, 0\right)$
where
$\tau=\frac{1+\sqrt{5}}{2}$

Five Platonic solids

Cube
$\{4,3\}$

Octahedron
$\{3,4\}$

Tetrahedron $\{3,3\}$

Icosahedron
$\{3,5\}$

Dodecahedron
$\{5,3\}$

Schläfli symbol

Schläfli symbol

Desired properties of a Schläfli symbol of a regular polytope Π_{n}
(1) Schläfli symbol is an ordered set of $n-1$ natural numbers

Schläfli symbol

\{6\}

$\{3,4\}$

Desired properties of a Schläfli symbol of a regular polytope Π_{n}
(1) Schläfli symbol is an ordered set of $n-1$ natural numbers
(2) If Π_{n} has Schläfli symbol $\left\{k_{1}, k_{2} \ldots, k_{n-1}\right\}$, then its

- Facets have Schläfli symbol $\left\{k_{1}, k_{2} \ldots, k_{n-2}\right\}$.
- Vertex figures have Schläfli symbol $\left\{k_{2}, k_{3} \ldots, k_{n-1}\right\}$.

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{v, r\}$

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{v, r\}$

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schläfli symbol of Π_{4} to be $\{p, q, r\}$.

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schläfli symbol of Π_{4} to be $\{p, q, r\}$.
In general if Π_{n} is a regular polytope, then it has

- facets $\left\{k_{1}, k_{2}, \ldots, k_{n-2}\right\}$
- vertex figures $\left\{k_{2}, \ldots, k_{n-2}, k_{n-1}\right\}$

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schläfli symbol of Π_{4} to be $\{p, q, r\}$.
In general if Π_{n} is a regular polytope, then it has

- facets $\left\{k_{1}, k_{2}, \ldots, k_{n-2}\right\}$
- vertex figures $\left\{k_{2}, \ldots, k_{n-2}, k_{n-1}\right\}$

Schläfli symbol

Claim

Vertex figure of a facet is a facet of a vertex figure.
If Π_{4} is a regular polytope, then it has

- 3-dimensional facets $\{p, q\}$
- 3-dimensional vertex figures $\{q, r\}$

We define the Schläfli symbol of Π_{4} to be $\{p, q, r\}$.
In general if Π_{n} is a regular polytope, then it has

- facets $\left\{k_{1}, k_{2}, \ldots, k_{n-2}\right\}$
- vertex figures $\left\{k_{2}, \ldots, k_{n-2}, k_{n-1}\right\}$

Thus the Schläfli symbol of Π_{n} is $\left\{k_{1}, k_{2}, \ldots, k_{n-1}\right\}$.

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\{3,3,3\},\{3,3,4\},\{3,3,5\}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{gathered}
\{3,3,3\},\{3,3,4\},\{3,3,5\} \\
\{3,4,3\}
\end{gathered}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{gathered}
\{3,3,3\},\{3,3,4\},\{3,3,5\} \\
\{3,4,3\} \\
\{3,5,3\}
\end{gathered}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3\}, & \{3,3,4\},\{3,3,5\} \\
& \{3,4,3\} \\
& \{3,5,3\} \\
\{4,3,3\}, & \{4,3,4\},\{4,3,5\}
\end{aligned}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3\}, & \{3,3,4\},\{3,3,5\} \\
& \{3,4,3\} \\
& \{3,5,3\} \\
\{4,3,3\} & ,\{4,3,4\},\{4,3,5\} \\
\{5,3,3\}, & \{5,3,4\},\{5,3,5\}
\end{aligned}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
&\{3,3,3\},\{3,3,4\},\{3,3,5\} \\
&\{3,4,3\} \\
&\{3,5,3\} \\
&\{4,3,3\},\{4,3,4\},\{4,3,5\} \\
&\{5,3,3\},\{5,3,4\},\{5,3,5\}
\end{aligned}
$$

Regular 4-dimensional polytopes

Regular polyhedrons

$\{3,3\},\{3,4\},\{3,5\},\{4,3\},\{5,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
&\{3,3,3\}\{3,3,4\},\{3,3,5\} \\
&\{3,4,3\} \\
&\{3,5,3\} \\
&\{4,3,3\},\{4,3,4\},\{4,3,5\} \\
&\{5,3,3\},\{5,3,4\},\{5,3,5\}
\end{aligned}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\{3,3,3,3\},\{3,3,3,4\},\{3,3,3,5\}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{gathered}
\{3,3,3,3\},\{3,3,3,4\},\{3,3,3,5\} \\
\{3,3,4,3\}
\end{gathered}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3,3\} & \{3,3,3,4\},\{3,3,3,5\} \\
& \{3,3,4,3\} \\
& \{3,4,3,3\}
\end{aligned}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3,3\}, & \{3,3,3,4\},\{3,3,3,5\} \\
& \{3,3,4,3\} \\
& \{3,4,3,3\} \\
\{4,3,3,3\}, & \{4,3,3,4\},\{4,3,3,5\}
\end{aligned}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3,3\}, & \{3,3,3,4\},\{3,3,3,5\} \\
& \{3,3,4,3\} \\
& \{3,4,3,3\} \\
\{4,3,3,3\}, & \{4,3,3,4\},\{4,3,3,5\} \\
\{5,3,3,3\}, & \{5,3,3,4\},\{5,3,3,5\}
\end{aligned}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3,3\} & \{3,3,3,4\},\{3,3,3,5\} \\
& \{3,3,4,3\} \\
& \{3,4,3,3\} \\
\{4,3,3,3\}, & \{4,3,3,4\},\{4,3,3,5\} \\
\{5,3,3,3\} & ,\{5,3,3,4\},\{5,3,3,5\}
\end{aligned}
$$

Regular 5-dimensional polytopes

Six regular 4-dimensional polytopes
$\{3,3,3\},\{3,3,4\},\{3,3,5\},\{3,4,3\},\{4,3,3\},\{5,3,3\}$
By superimposing we can form the following Schläfli symbols:

$$
\begin{aligned}
\{3,3,3,3\}, & \{3,3,3,4\},\{3,3,3,5\} \\
& \{3,3,4,3\} \\
& \{3,4,3,3\} \\
\{4,3,3,3\}, & \{4,3,3,4\},\{4,3,3,5\} \\
\{5,3,3,3\} & ,\{5,3,3,4\},\{5,3,3,5\}
\end{aligned}
$$

Three regular 5-dimensional polytopes

$\{3,3,3,3\},\{3,3,3,4\},\{4,3,3,3\}$

Three regular 5-dimensional polytopes

$\{3,3,3,3\},\{3,3,3,4\},\{4,3,3,3\}$
Proceeding in the same manner we can form the following Schläfli symbols:

$$
\begin{aligned}
& \alpha_{n}=\{3,3, \ldots, 3,3\} \\
& \beta_{n}=\{3,3, \ldots, 3,4\} \\
&=\left\{3^{n-1}\right\} \text { Simplex } \\
& \gamma_{n}=\{4,3, \ldots, 3,3\}
\end{aligned}=\left\{4,3^{n-2}\right\} \text { Hypercube } \quad \text { Cross polytope }
$$

Three regular 5-dimensional polytopes

$\{3,3,3,3\},\{3,3,3,4\},\{4,3,3,3\}$
Proceeding in the same manner we can form the following Schläfli symbols:

$$
\begin{aligned}
& \alpha_{n}=\{3,3, \ldots, 3,3\} \\
& \beta_{n}=\{3,3, \ldots, 3,4\} \\
&=\left\{3^{n-1}\right\} \text { Simplex } \\
& \gamma_{n}=\{4,3, \ldots, 3,3\}
\end{aligned}=\left\{4,3^{n-2}\right\} \text { Hypercube } \quad \text { Cross polytope } \text {. }
$$

We can also get $\{4,3, \ldots, 3,4\}=\left\{4,3^{n-3}, 4\right\}$, but it turns out to be a honeycomb.

Summary

Dimension	1	2	3	4	≥ 5
Number of polytopes	1	∞	5	6	3

